https://www.youtube.com/watc
h?v=-RGLYynPQGQ&feature=
youtu.be

Group Members

Ibrahim Kettaneh (ibrahim.kettaneh(@queensu.ca)
Sophie Liang (22whr(@gueensu.ca)

Noelle Morley (25gdb@queensu.ca) Presenter 2
Annika Tran (23LM5@queensu.ca)

Nicole Wu(221120(@queensu.ca) Group Leader
Joshua Zheng (23SBN | (@queensu.ca) Presenter 1

mailto:ibrahim.kettaneh@queensu.ca
mailto:22whr@queensu.ca
mailto:25gdb@queensu.ca
mailto:23LM5@queensu.ca
mailto:22ll20@queensu.ca
mailto:23SBN1@queensu.ca

Architectural Style

>
Non-ML Foundatlonw

- Editor Core

- Editor Service
- Void Model Service
- UI Component

y -

Primary Style: Layered Architecture
Supporting Style: Implicit Invocation (Publish/Subscribe)
Base Framework: Forked from Visual Studio Code
Purpose: Enables modularity, scalability, and Al integration

(’
Bridge Components

- Content Extraction
- Prompt Engineering System
- Response Integration

.

<

(
ML Integration Layer

\

= LLM Connector
- LLM Message Service

- Edit Code Service
- Auto-complete Service

P . Chat Thread Service

\- Tools Service

Layered Subsystems

e Foundational Core:

o Inherits from VS Code’s core modules

o Handles editor functions, Ul rendering, and file management
e Bridge Layer:

o Mediates between the core and Al components

o Manages API calls, model selection, and prompt dispatching
e ML Integration Layer:

o Interfaces with external or local Al providers
o Handles token management and response parsing

Interactions between subsystems

e Layered Communication: maintains clarity and modular design

e Bridge layer abstraction: reduced dependency between IDE and Al backends

e Pub/Sub messaging: enables asynchronous updates and event driven
behaviour

e Security concerns: User control & System stability

Concurrency & Open source model

e Concurrency

o Pub/Sub enables simultaneous processes (editor + Al feedback)
o Avoids blocking operations through event driven communication

e Team collaboration

o Layered design allows a team to focus on a layer
o Open source model encourages distributed contributions

Quickened development cycle + potential for modular testing

One sequence diagram is presented and matches the
~ conceptual architecture box-and-arrow diagram

Edvor U

Developer Setings Ul Void Setings Sevice Bridge vaidation

Developer Dependent Senvices.

Derivation Process

Methods uses:

- Research void’s GitHub source code page

- Analyze codebase guide document in the repository and consulted with
external sources such as Kumar’s and Ahwan’s respective articles on Void

- Deeper analyzation analysis of the source code

Combine the key findings concluded identified pub/sub as another style that
inspired the architecture of Void.

Discussion of considered alternatives (and why they went
with the current one)

e Client/Server Architecture: Good as it reduces resources on local device, but
sending commands to remote servers increases latency, and sending code to
remote server poses security concerns

e (Object-Oriented Architecture: good for reusing and simplifies unit testing, but
has issues with tight coupling between editor, ML, and bridge logic.

Limitations Of Reported Findings

e Conceptual architecture will most likely be different than the concrete
architecture
e Hard to get accurate view without being the actual developers of Void

Learned Lessons

e \oid exemplifies a new generation of IDEs designed to work with Al

e Built on VS Code’s foundation, Void’s layered and modular architecture
enables seamless Al integration

e Clear layer responsibilities

e The implicit invocation (pub/sub) model allows components to remain
independent

e The design reflects a modern shift toward concurrent, scalable architectures
that support rapid evolution and responsiveness.

e Global, community-driven development promotes innovation, transparency,
and continuous improvement of the platform.

