
https://www.youtube.com/watc
h?v=-RGLYynPQGQ&feature=

youtu.be

Group Members
Ibrahim Kettaneh (ibrahim.kettaneh@queensu.ca)
Sophie Liang (22whr@queensu.ca)
Noelle Morley (25gdb@queensu.ca) Presenter 2
Annika Tran (23LM5@queensu.ca)
Nicole Wu(22ll20@queensu.ca) Group Leader
Joshua Zheng (23SBN1@queensu.ca) Presenter 1

mailto:ibrahim.kettaneh@queensu.ca
mailto:22whr@queensu.ca
mailto:25gdb@queensu.ca
mailto:23LM5@queensu.ca
mailto:22ll20@queensu.ca
mailto:23SBN1@queensu.ca

Architectural Style

● Primary Style: Layered Architecture
● Supporting Style: Implicit Invocation (Publish/Subscribe)
● Base Framework: Forked from Visual Studio Code
● Purpose: Enables modularity, scalability, and AI integration

Layered Subsystems

● Foundational Core:
○ Inherits from VS Code’s core modules
○ Handles editor functions, UI rendering, and file management

● Bridge Layer:
○ Mediates between the core and AI components
○ Manages API calls, model selection, and prompt dispatching

● ML Integration Layer:
○ Interfaces with external or local AI providers
○ Handles token management and response parsing

Interactions between subsystems

● Layered Communication: maintains clarity and modular design
● Bridge layer abstraction: reduced dependency between IDE and AI backends
● Pub/Sub messaging: enables asynchronous updates and event driven

behaviour
● Security concerns: User control & System stability

Concurrency & Open source model

● Concurrency
○ Pub/Sub enables simultaneous processes (editor + AI feedback)
○ Avoids blocking operations through event driven communication

● Team collaboration
○ Layered design allows a team to focus on a layer
○ Open source model encourages distributed contributions

Quickened development cycle + potential for modular testing

One sequence diagram is presented and matches the
conceptual architecture box-and-arrow diagram

Derivation Process

Methods uses:

- Research void’s GitHub source code page
- Analyze codebase guide document in the repository and consulted with

external sources such as Kumar’s and Ahwan’s respective articles on Void
- Deeper analyzation analysis of the source code

Combine the key findings concluded identified pub/sub as another style that
inspired the architecture of Void.

Discussion of considered alternatives (and why they went
with the current one)

● Client/Server Architecture: Good as it reduces resources on local device, but
sending commands to remote servers increases latency, and sending code to
remote server poses security concerns

● Object-Oriented Architecture: good for reusing and simplifies unit testing, but
has issues with tight coupling between editor, ML, and bridge logic.

Limitations Of Reported Findings

● Conceptual architecture will most likely be different than the concrete
architecture

● Hard to get accurate view without being the actual developers of Void

Learned Lessons

● Void exemplifies a new generation of IDEs designed to work with AI
● Built on VS Code’s foundation, Void’s layered and modular architecture

enables seamless AI integration
● Clear layer responsibilities
● The implicit invocation (pub/sub) model allows components to remain

independent
● The design reflects a modern shift toward concurrent, scalable architectures

that support rapid evolution and responsiveness.
● Global, community-driven development promotes innovation, transparency,

and continuous improvement of the platform.

