
1

Assignment 1: Conceptual Architecture
of the Void Editor

October 10th 2025

Ibrahim Kettaneh (ibrahim.kettaneh@queensu.ca)
Sophie Liang (22whr@queensu.ca)
Noelle Morley (25gdb@queensu.ca)
Annika Tran (23LM5@queensu.ca)

Nicole Wu(22ll20@queensu.ca)
Joshua Zheng (23SBN1@queensu.ca)

2
Table of Contents

1. Abstract... 3
2. Introduction and Overview... 3
3. Derivation Process... 4
4. Architecture.. 5

4.1 Styles.. 5
4.1.1 Layered Architecture.. 5

4.1.1.1 Non-ML Foundation Layer... 5
4.1.1.2 Bridge Components Layer... 5
4.1.1.3 Machine Learning Integration Layer... 6

4.1.2 Implication Invocation (Pub/Sub) Style.. 6
4.1.3 Alternative Styles.. 6

4.1.3.1 Client/Server Architecture... 6
4.1.3.2 Object-Oriented Architecture... 6

4.2 Components... 7
4.2.1 Editor Core.. 7
4.2.2 Editor Services.. 7
4.2.3 UI Component... 7
4.2.4 Void Setting Service.. 7
4.2.4 Content Extraction Subsystem.. 7
4.2.5 Prompt Engineering System... 7
4.2.6 Response Integration Subsystem.. 8
4.2.7 LLM Connector... 8
4.2.8 LLM Message Service.. 8
4.2.9 Edit Code Service... 8
4.2.10 Autocomplete Service... 8
4.2.11 Chat Thread Service.. 8
4.2.12 Tools Service... 9

5. Diagrams... 9
5.1 Box and Arrow Diagram.. 9

6. External Interfaces... 9
7. Use Cases.. 10

7.1 Ctrl+K Quick Fix Workflow.. 11
7.2 Provider Onboarding & Model Refresh.. 11

8. Conclusion.. 12
9. Lessons Learned... 12

3
Appendix A: Data Dictionary... 13
Appendix B: Naming Convention.. 14
Appendix C: AI Usage Report.. 14

AI Member Profile and Selection Process... 14
Tasks Assigned to the AI Teammate.. 15
Interaction Protocol and Prompting Strategy.. 15
Validation and Quality Control Procedures... 15
Quantitative Contribution to Final Deliverable... 15
Reflection on Human-AI Team Dynamics.. 15

References... 16

1. Abstract
This report concerns a conceptual analysis of the Void IDE, which is an open-source,
AI-integrated fork of Microsoft’s VS Code. Void expands on VS Code’s architecture to enable
seamless collaboration between software developers and AI agents within the same development
environment. By usage of both a layered and implicit invocation communication style, Void
achieves both modularity and flexibility, allowing AI-driven services to interact dynamically and
responsively with a core IDE without compromising the security of the system.

The architecture was found to contain three primary layers: a Non-ML Foundation layer, which
serves as the basic IDE editor, the bridge layer, which contains a series of components mediating
the deterministic editor features, and the probabilistic AI features and the ML integration layer,
which connects the editor to the AI agents through modular services. This design enables
extensibility, concurrency, and security, offering developers freedom and customizability in
integrating an AI model.

This report further examines Void’s derivation from VS Code’s source, outlines its core
components, contains diagrams with key control flows, and presents use cases including Quick
Fix automation and provider onboarding. Findings suggest that Void’s architecture effectively
balanced both AI augmentation and user agency, setting a precedent for potential future IDEs
that integrate intelligent systems while maintaining transparency, performance, and developer
trust.

2. Introduction and Overview
Void is a free-to-use, open-source AI code editor that is a fork of Microsoft’s Visual Studio Code.
It was developed in response to the growing demand for a transparent and customizable AI
assistant in a development environment . It was modified to incorporate and designed to further
integrate AI agents into a code base and project and allows users to select their own AI agent and
have that agent perform edits and transform the code based on prompts and suggestions.

4
Void utilises an open source model, where the entire codebase is accessible and forkable online,
and allows users to integrate their own chosen AI model and tokens to further tailor their
development experience.

Having open source allows for more transparency for developers to inspect the code for a better
understanding of the application and contribute to its development. Void also ensures that users
have more control over their intellectual property by local processing information and avoiding
information sent to private backend compared to other AI applications that usually put users’
data into external servers to process for a more secure protection of users’ privacy. Void also
allows choices of any AI agent, where users can choose any model that best aligns with their
goals and needs.

In the architecture style, it was decided that Void utilizes a stricter layered architecture and
implicit invocation/pub sub. From each layer, each component was analysed for interactions on a
layered and pub sub configuration. It can be concluded that there are three layers: the
foundational core, the bridge layer, and the machine learning (ML) integration layer. By
combining both layered and implicit invocation, Void would allow for both modularity and
flexibility, which is key in terms of its goals of integrating AI into an IDE’s workflow.

Driven by the issue that all major AI IDEs are closed source, the founders of Void decided
something needed to change. The developers responsible for the implementation of Void are split
into two main subteams: the core team and a network of contributors. The core team handles the
decision making and overall direction of architecture as well as the bulk of the commits. The
contributors, who were introduced later, focus primarily on improving user experience and
refining existing features.

The layered architecture style of Void supports this decision by enabling the developers to work
on different layers and components independently without interfering with each other. For
example, a frontend team can focus on developing the UI components, while the backend team
simultaneously works on components like the LLM connector and prompt engineering system.
Despite this, there was a clear hierarchy in the delegation of tasks. According to the Void
Roadmap found on its Github, the responsibilities are organized into five main categories,
running from Improvements A, the most urgent and impactful, to Backlog, the lower priority
changes to be addressed in the future.

The pub sub architecture style further reinforces the asynchronous yet collaborative workflow.
Due to components communicating through publishing and subscribing to events, event triggers
only affect components subscribed to the event, rather than every active module.

5
Overall, Void’s organizational structure promotes collaboration and scalability by leveraging
design patterns that support parallel development and maintain adaptability as new components
and developers are introduced.

3. Derivation Process
The research process began with examining Void’s GitHub source code page. An initial review
of the project’s file structure, configuration files and documentation provided crucial insight into
the overall concrete organisation and functionality of the software. Then, using the codebase
guide document in the repository along with external sources such as Kumar’s and Ahwan’s
respective articles on Void, we deduced the architecture’s layered style, specifically how the
architecture contained several layers emerging upwards from its VS Code origins.

A more focused analysis of the source code was conducted, looking at individual code files and
the relationship between them. This along with the codebase guide helped us derive the key
components of the architecture. At this stage we also identified pub/sub as another style that
inspired the architecture of Void.

With key components determined we brainstormed possible use cases, eventually landing on
Quick Fix and provider set up as the two cases most relevant to the components selected. With
the use cases determined, sequence diagrams were created for each case using what was
observed from our in-depth analysis of the codebase as a whole as well as the architecture styles
determined as reference.

Finally, using the sequence diagrams, we created the box and arrow diagram as a high-level
representation of the two diagrams.

4. Architecture
4.1 Styles
4.1.1 Layered Architecture
Void’s architecture is organized into three distinct layers: the foundational core, the bridge layer,
and the machine learning (ML) integration layer. These layers combine the robustness and
conciseness of a typical IDE with the dynamic abilities of ML components to deliver a new
modern coding experience. Layered separation also facilitates concurrency. Since layers are
loosely coupled, tasks can be processed independently. For example, the foundation layer could
be running editor actions while ML features are run by the ML layer.

6
4.1.1.1 Non-ML Foundation Layer

The lowest layer is the non-ML core, which contains the majority of the central code from the
original VS Code code. It is mostly unmodified and serves as a basis for several essential
functions. However, there is one key addition: the Void Model Service. This component gives
ML models increased access to the user’s codebase.

4.1.1.2 Bridge Components Layer

The bridge exists to connect the ML Integration Layer and the IDE Foundation. It contains
components that mediate between human actions and machine-derived operations, ensuring that
AI agents behave in accordance with the user’s intent and that communication between the two
layers remains contextually accurate and efficient. The Bridge Layer also serves as a translation
and safety boundary between deterministic editor operations and probabilistic machine learning
responses.

4.1.1.3 Machine Learning Integration Layer

The third layer is known as the ML Integration layer and contains key functionality that binds the
ML functionality of the program directly into the workflow of an end user. This contains the
code that contains interactions between the users' code and AI agents.

4.1.2 Implication Invocation (Pub/Sub) Style
Alongside the layered stack, Void relies on VS Code's built-in core event bus to keep
components in sync without binding them tightly together. Services publish notifications
whenever their state changes, and any interested collaborator subscribes to those events rather
than calling the service directly.

For example, the chat thread service listens for streaming tokens emitted by the LLM message
channel, diff zones raise events that drive the approval UI, and provider settings broadcasts
prompt-dependent services to refresh their configuration. This implicit invocation backbone
makes it straightforward to bolt on new capabilities-whether that is a metrics hook, a tooling

7
endpoint, or an additional UI surface-by wiring fresh listeners into existing channels instead of
reworking every layer in the system. This style of architecture also has decoupled components
allowing for concurrency.

4.1.3 Alternative Styles

4.1.3.1 Client/Server Architecture

In a client/server style, Void’s IDE would be the client that would send codes and other resources
to ML functionalities, which act as remote servers. This can be beneficial as it reduces resource
demands on the user’s local device and facilitates scaling of backend AI services. On the other
hand, sending commands to remote servers increases latency, which makes AI integration less
responsive. Furthermore, sending users’ codes to remote servers poses security concerns.

4.1.3.2 Object-Oriented Architecture

If Void is designed with an object-oriented approach as opposed to pub/sub, all functionality
would be encapsulated in classes and objects. Some benefits to this would be that it promotes
reusing and simplifies unit testing. However, compared to pub/sub, this style will lead to tight
coupling between editor, ML, and bridge logic, making extensibility more difficult.

4.2 Components

4.2.1 Editor Core
This component serves as a backbone for the non-ML foundation layer. This component is
responsible for most of the functionality of the IDE as a piece of software. Most of the editor
core is code retained from the original VS Code IDE, and contains very rudimentary operations
such as inputting and displaying text, as well as essential code for starting up the software.

4.2.2 Editor Services
Another component in the non-ML foundation layer. A natural extension of the editor core, it
consists of a series of functions related to editor core, such as copy-paste, search, and syntax
awareness. These functions become extremely useful for later ML operations to take place, such
as inserting machine-generated code into an existing source.

4.2.3 UI Component
A component encompassing all UI functionality that also exists in the non-ML foundation layer.
It is a modified version of the original VS Code UI with new utilities such as text boxes and
prompts that fit into an ML-enriched environment. This component is responsible for drawing
the actual software on the screen.

8
4.2.4 Void Setting Service
The Void Setting Service acts as a centralized configuration manager within the foundational
layer of the architecture. It governs how user preferences, model credentials, and runtime
parameters are stored, retrieved and propagated throughout the system. This services provides a
secure place for user credentials to be access across the system.

4.2.5 Content Extraction Subsystem
A component in the bridge layer that continuously analyses the user’s workspace and editing
state to determine which parts of the codebase are most relevant for AI updates and edits. It
selectively gathers snippets, dependencies, and semantic cues to ensure the AI receives
significant enough context without overwhelming the model or exceeding token limits.

4.2.6 Prompt Engineering System
Building upon the content extraction subsystem, the prompt engineering system allows for the
creation of dynamically constructed prompts based on both user input and extracted context. This
system leverages templates, heuristics, and model-specific optimisations to ensure that each AI
query is both well-formed and effective. It acts as a linguistic and logical bridge between user
intent and machine interpretation.

4.2.7 Response Integration Subsystem
Once an AI response is received, the response integration subsystem processes and merges it
back into the editor. It validates syntax, detects conflicts, and ensures that the modifications are
compatible with the IDE’s version control and undo mechanisms. This makes a seamless
workflow where AI-suggested edits are just as smooth as user edits. It is another component in
the bridge layer.

4.2.8 LLM Connector
The primary component in the ML layer. It is what enables specific AI agents to be engaged.
This component contains multiple backends to separate APIs. This service handles
authentication, request throttling, error handling, and many miscellaneous tasks involving direct
calls to an ML service.

4.2.9 LLM Message Service
The data coming to and from the MLs themselves is routed by the LLM Message service, which
acts as a source of directions between the editor, the bridge, and external AI systems. This
service ensures that prompts, responses, and transformation requests are all handled consistently
and accurately, and that AI agents operate within their authorisation limits.

9
4.2.10 Edit Code Service
The Edit Code Service utilises this messaging framework to implement live AI-assisted editing.
It handles functions such as streaming code suggestions, code generation, and patch
implementation. Functions in this component also attempt to maintain the editor's original text
and style. This feature is a potential bottleneck and is designed with this in mind, as this
component interacts in real time with the user.

4.2.11 Autocomplete Service
An advanced line completion agent. It merges outputs from the MLs with contextual information
from the source, allowing for fast and instantaneous suggestions.

4.2.12 Chat Thread Service
Conversational interaction with the AI agents is managed by the Chat Thread Service, which
allows users to maintain ongoing, multi-turn discussions with an AI agent. Contextual relevance
is stored within this, so the AI knows what the user is focusing on at this moment. The
human-level, plain language interface allows users to directly administer commands to the ML
services.

4.2.13 Tools Service
All other components discussed in the ML integration layer are complemented by the Tools
Service, which gives AI agents an interface that allows for exposing system-level operations
such as file manipulation, searching, and command execution with crucial security constraints.
This suite of agentic tools allows for enhanced abilities of the AI agents with strict security,
ensuring user trust and system stability.

5. Diagrams

5.1 Box and Arrow Diagram
The diagram presents the architecture of Void, showing major components which are organized
into three layers. The Foundation Layer includes the UI Component and Editor Services, which
handle user interactions, editor state, and settings, along with the Editor Core responsible for
basic editing operations and the Void Settings Service, which manages configuration and
credentials. The Bridge Layer features the Content Extraction Subsystem and Prompt
Engineering System, which process code context and build prompts for AI requests, as well as
the Response Integration Subsystem, which validates and merges AI-generated changes. The ML

10
Integration Layer consists of the LLM Connector and LLM Message Service, which facilitate
communication with external AI models, and services such as Autocomplete, Edit Code, Tools,
and Chat Thread Service, each delivering specialized AI-powered features. The diagram uses
lines and arrows to show the flow of data and control between components, with dashed
connectors representing event-driven communication via the PubSub Bus, enabling
asynchronous updates and loose coupling throughout the system. This layout highlights the
separation of responsibilities, modular design, and event-driven architecture central to Void.

6. External Interfaces
Void relies on a small set of external channels. The table below summarises each interface and
the components that drive it.

Interface Direction How it is used within the architecture

Provider HTTP APIs
(OpenAI, Ollama, Azure,
Vertex, Bedrock, etc.)

Outbound The LLM Connector and provider
adapters in the ML integration layer
construct requests and stream responses

11

via the LLM Message Service.

MCP servers Bidirectional The Tools Service and Chat Thread
Service subscribe to MCP events,
exposing tool metadata to prompts and
returning results over the event bus.

VS Code workbench
services

Bidirectional Foundation-layer editor core and services
consume VS Code singletons for storage,
terminal, metrics, and undo/redo,
publishing updates for the bridge and ML
components.

Local filesystem Bidirectional The Void Settings Service and Tools
Service validate URIs, read/write project
files, and run workspace-scoped
commands with appropriate guards.

GitHub release feeds Outbound The Void Update Service checks release
metadata when automatic updates are
unavailable and notifies the UI through
publish-subscribe events.

7. Use Cases
The following scenarios illustrate how the layered architecture and implicit invocation provide
end-user workflows:

7.1 Ctrl+K Quick Fix Workflow
Quick Fix begins at the editor core when a developer presses Ctrl+K. Bridge services gather the
relevant code, build a prompt, and hand it to the LLM Connector in the ML integration layer.
The Edit Code Service streams candidate patches and raises diff events; frontend listeners
subscribe to those events to render inline previews. Accepting a change routes the edit back
through the editor core, showing collaboration between the layered components and the event
bus.

12

7.2 Provider Onboarding & Model Refresh
Provider setup starts with the Void Settings Service storing credentials in the foundation layer.
Bridge utilities validate endpoints and pass requests to provider adapters in the ML integration
layer. The LLM Message Service publishes updated model lists, and settings events notify
dependent services-chat, apply, and autocomplete so they refresh automatically. The flow shows
how configuration propagates across the layers while publish/subscribe keeps components in
sync.

8. Conclusion
From the research conducted on Void, it becomes apparent that it uses a layered architectural
style complemented by implicit invocation communication. The layered structure brings the
system into separate layers with clearly defined responsibilities. Combined with the anonymous
messaging strength of the pub/sub model, this design promotes scalability and concurrency
across different system components

13
The implementation of AI functionality within an existing IDE framework demonstrates how
modern software can embed ML systems without compromising user control or system stability.
By retaining both extensibility and familiarity that users have with VS Code, Void successfully
merges traditional software engineering paradigms with emerging AI driven development.

The architectural analysis of Void provides many valuable insights; however, there are still
limitations in the reported findings. Since the application is still new and developing, there is
insufficient documentation on the mechanisms and system interactions. This limits the report’s
ability to draw definite conclusions as much of the analysis was inferred by studying code. When
evidence was scarce, the group primarily focused on the source code, though conceptual
architecture often differs from the concrete architecture. Additionally, with the reliance on
open-source contributors, there are inconsistencies with implementation styles across modules,
making it challenging to accurately grasp the overall architecture. To improve the quality of
future analyses, it will be beneficial to obtain input from the core developers and contributors or
trace the system’s event flow with external monitoring tools to gain a clearer understanding of
the system’s architecture and behaviour.

Although still a new platform, Void’s community based development model allows it to be a
significant step forward in AI assisted programming. As the technology continues to progress,
Void will play an influential role in shaping how developers and AI systems work together to
develop future software.

9. Lessons Learned
Through analysis of Void’s conceptual architecture, our team gained many valuable insights into
how modern software systems are evolving to accommodate artificial intelligence systems whilst
maintaining end user control and system stability. Void represents a new class of development
tools that aim to cooperate with AI, rather than replacing the programmer.

Void demonstrates the importance of modularity in its conceptual architecture; the software was
built from the ground up to be continuously improved and extended. By expanding upon the
established foundation of VS Code, Void’s developers were able to integrate AI driven
components without disrupting the decades old, traditional coding workflow. This approach
highlights how leveraging existing frameworks can allow for ideally increased productivity
while preserving the user’s trust and the system’s stability.

One significant factor contributing to Void’s success as a system is the emphasis on architectural
modularity. From using a layered architecture with implicit invocation elements, each layer
gained specific and distinct responsibilities: the foundation brings deterministic, human driven
IDE services whereas the ML integration layer brings in probabilistic elements from AI services
and the bridge merges these two systems together in a way that is efficient and seamless for the

14
end user. The pub/sub model ensures these components remain loosely coupled, allowing new
tools and AI services to be added or updated without requiring a redesign of the entire system.
The design mirrors a growing trend in software architecture towards concurrent systems, which
promote flexibility and scalability, as well as ease of maintenance in the long term.

Void’s employment of open source development allowed for an international team of developers
to communally add and expand the project. This collaborative structure encourages diversity in
expertise and ideas, ultimately leading to a more robust platform. It also sets a precedent for
modern software systems to be developed transparently and with heavy involvement of the end
users.

Appendix A: Data Dictionary
AI Agent: an autonomous entity that perceives environment and takes actions to achieve goals
Autocomplete Service: provides real-time code suggestions to the user

Approval UI: Interface for reviewing and approving code changes.

Bridge Component Layer: mediator between non-ML foundation layer and ML integration
layer

Chat Thread Service: manages the conversation between user and AI agent

Content Extraction Subsystem: collects the most relevant portions of the codebase to allow the

AI to generate accurate and meaningful outputs

Diff Zone: UI area showing code changes and raising events for approval.

Edit Code Service: extends the Editor Core with additional functions such as copy-paste,
search, and syntax awareness. These support both manual editing and later ML-driven
operations.

Editor Core: Encompass most of the IDE’s basic non-ML functionalities

Event Bus: Centralized system for broadcasting and subscribing to events, enabling loose
coupling.

Implication Invocation Style (Pub-Sub): an architecture style where the components
(subscribers) interact through calls; the message is broadcasted through a central system and the
subscribers only receive the events they are interested in

Integrated Development Environment (IDE): application that combines essential tools for
software development

Layered Architecture Style: an architecture style where layers provide services for the layer
above, and act as clients to the one below, creating a hierarchy.

15
LLM Connector: acts like a gateway and manager for all interactions with AI services

LLM Message Service: acts as the messaging and orchestration layer that handles request and
responses between internal IDE services and the external AI backend

Machine Learning Integration Layer: third layer of Void’s architecture; enables AI-powered
functionality to be embedded directly into the developer workflow

Non-ML Foundation Layer: lowest layer of Void’s architecture; contains traditional IDE
infrastructure from VS Code with an added component that allows ML models to access user
codebase

Prompt Engineering System: prepares and optimizes requests sent to the AI system

Response Integration Subsystem: component within the bridge layer of Void editor; how
AI-generated responses are validated, processed, and incorporated back into the editor

Setting Service: Centralised configuration manager that securely stores and broadcasts user
preferences and model settings across all system layers.

Source Code Editor: an interface where code is written

Tool Service: Provides AI Agents with secure interface to perform system-level operations

User Interface (UI): Components that make up the space for user to interact with program

Workspace: User’s current project files and resources.

Appendix B: Naming Convention
AI: artificial intelligence

API: Application Programming Interface

IDE: Integrated development environment

LLM: Large Language Model

ML: machine learning

UI: user interface

VS Code: Visual Studio Code

Appendix C: AI Usage Report
AI Member Profile and Selection Process
Models were selected based on accessibility (in terms of price per credit) and ease of use. Based
on these criteria, two models were shortlisted due to: GPT-4 (May 2024), and Deepseek 8 (July

16
2024). Both models are free at the time of writing and each provide simple, easy to use chat
based interfaces. This approach of chat based interaction allowed for quick responses that come
naturally to human authors, and allowed us to interact with an AI teammate as if it were someone
in a messaging service.

We ultimately chose GPT-4 as the model is more familiar to most members of our team.

Tasks Assigned to the AI Teammate
AI was seen as too probabilistic to use for anything research-based due to the huge amounts of
inaccuracies and false information in AI-generated text. Therefore, AI usage was strictly limited
to proofreading and as an advanced thesaurus, finding ways to rephrase and reorganise
information in order to more effectively portray a point or concept.

Interaction Protocol and Prompting Strategy
When editing the project documents collaboratively, each team member had a copy of GPT-4
open in ChatGPT to reference from. This meant that if a team member needed to ask a question
or was unsure of anything, the AI model could quickly respond. This allowed for each member
to have a customized instance where they could ask for information specific to what they were
currently working on.

Validation and Quality Control Procedures
Whenever AI was used to proofread a section, team members would prompt an AI model to
suggest improvements, rather than produce a corrected model. This allowed team members to
review the parity of these potential changes compared to the point already being made, to ensure
that they do not erase any information or significantly modify tone and context. This process
ensured no one was directly submitting text directly from the AI model, and using it to bolster
our human expertise with its knowledge of grammar and vocabulary.

Quantitative Contribution to Final Deliverable
Due to our denial of using directly AI generated text into the report, giving a quantitative
contribution is difficult to estimate. Giving a value for the text generated by AI could come out
to lower than 10% in terms of word count, despite how definitive concepts in the text would
most likely be identical, albeit with worse structures. All of the research and derivation process
was completed by the human team members. Similarly, all diagrams were produced by human
team

17
Reflection on Human-AI Team Dynamics
Throughout the research and report processes, the use of AI introduced many inconsistencies.
While the team did not put any AI-generated content directly into the paragraphs, some sections
remained more heavily influenced by AI suggestions while others remained purely
human-written. Additionally, since each team member was interacting with their own version of
GPT-4 and copying different sections of the report, their model had uneven knowledge on the
textual content of the essay so far. This created disparities in style, detail, and emphasis of
specific points.

The AI teammate occasionally provided useful suggestions or directions, but when the
information was cross-referenced, it was often inaccurate or misinterpreted. As a result, the team
refrained from relying heavily on AI, as it caused more confusion and time than it was worth.

In the end, an AI teammate proved to be more of a hindrance than an actual productive team
member.

Works Cited
Ahwan, Abdul Aziz. “Void Editor: The Open-Source AI Code Editor Revolutionizing Developer

Workflows.” Abdul Aziz Ahwan, 23 June 2025,
www.abdulazizahwan.com/2025/06/void-editor-the-open-source-ai-code-editor-revolutio
nizing-developer-workflow.html. Accessed 10 Oct. 2025.

Kumar, Aditya. “Void IDE: The Comprehensive Guide to the Open-Source Cursor Alternative.”
Medium, 24 Mar. 2025,
medium.com/@adityakumar2001/void-ide-the-comprehensive-guide-to-the-open-source-
cursor-alternative-2a6b17cae235.

“About Contributors | Voideditor/Void | Zread.” Zread, 2025,
https://zread.ai/voideditor/void/7-about-contributors.

“Overview | Voideditor/Void | Zread.” Zread, 2025,
zread.ai/voideditor/void/9-architecture-overview.

“Void/VOID_CODEBASE_GUIDE.md at Main · Voideditor/Void.” GitHub, 2024,
github.com/voideditor/void/blob/main/VOID_CODEBASE_GUIDE.md. Accessed 10
Oct. 2025.

“VoidEditor.” Github.com, 2025, github.com/voideditor/void. Accessed 10 Oct. 2025.

Pareles, Andrew. “Void: The open source Cursor alternative” Y combinator, 16 Sep 2024,

https://www.ycombinator.com/launches/Lrh-void-the-open-source-cursor-alternative.

